If it's not what You are looking for type in the equation solver your own equation and let us solve it.
c^2-10c+15=0
a = 1; b = -10; c = +15;
Δ = b2-4ac
Δ = -102-4·1·15
Δ = 40
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{40}=\sqrt{4*10}=\sqrt{4}*\sqrt{10}=2\sqrt{10}$$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-2\sqrt{10}}{2*1}=\frac{10-2\sqrt{10}}{2} $$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+2\sqrt{10}}{2*1}=\frac{10+2\sqrt{10}}{2} $
| n-(-113)=906 | | 5n-7+1+10n=n | | n−-113=906 | | 8x+39=14x+69 | | X+2x+2x-5-5-20=0 | | -1014/1001x=-7/10 | | 0.5(4x-2)=7+x | | 2(x-5)+4x=-22 | | 2x+4+3x-13=16 | | 33+7d=-4(3d+8) | | 3x+18=16+2x | | 4((n)+(n+1)+(n+2))=180 | | 4/9x+45=(6/x+5)-2/9 | | 6x−63=2x−2 | | 2n+n=4n-8 | | t/3=2/6 | | 1/2(4x-2)=7+x | | 2.9=7.6+y | | (x+30)+x+80=1800 | | 5x+82=x+38 | | 4(.5x-3)+x=24 | | 1/2(6+8x)=15 | | X+(2x-5)+(2x-5)=20 | | 8m+2=5m+11 | | -26x=208 | | s^2–41s=0 | | c=10+68 | | 27-18=(3x-2) | | 2×1-14x=-71 | | 3(1-x)=2(2-2x) | | 6x=5/ | | 108c^2-147=0 |